This post is not about the talk on this topic that I gave at Galvanize a couple of months ago. This was for the few who happened to be around the Seattle area and who didn’t have any other commitments at that time. I’m referring to the video based on this talk which I created afterwards and that found its way to the SafariBooksOnline website, via Technics Publications.
This 20+ minute video covers some of the basics of Julia (so that you don’t have to read a book on it to learn them), as well as some more data science specific topics, illustrating how it can be a useful tool in your toolkit. I am not making the argument that Julia is the next best thing since sliced bread, like other passionate coders often do, particularly when talking about Python in relation to R, or vice versa. Everyone has options and Julia is just one of them. Since it is the option I am qualified to talk about more than any of the other ones, I choose to do so in this video. My hope is that people will start using it more, probably in combination with Python, or whatever else they are using (even the C language). Because at the end of the day, what’s important is not the tool itself, but what you do with it. However, how useful a tool is greatly depends on the know-how around it. Even though you won’t be an expert in Julia by watching this video, you will get a good understanding of what it is about and why it can be a useful technology to know if you are doing data science. The better you are at data science, the better your chances of finding it useful. This is probably why many people use Julia for other applications (e.g. academic research, simulations, etc.). There is nothing wrong with that, since Julia was developed to be a versatile tool. The reason why this video is special is that it demonstrates a certain angle that many Julians may not be so aware of: Julia’s usefulness in data science. So, if you are intrigued by this possibility, here is my recommendation: improve your data science know-how, examine where you can use Julia in your data science pipeline, and start experimenting with it for specific data science problems that you are trying to solve. Hopefully this video can be an asset towards this objective. Disclaimer: I’m not poised to promote Julia because someone told me so, or because it’s a niche technology that I happened to be an expert in, at least for data science applications. The reason I’m promoting this new tech is because right now it appears to be the optimum choice for doing data science, particularly the hard parts of it. If Dr. X of university Y comes out tomorrow with a new programming platform that outperforms Julia overall, you can be sure that I’ll be looking into it with the same zest as I now have for Julia.
1 Comment
8/25/2017 02:43:01 am
Computer science is often perceived to be the easiest field along with the field of Information Technology because they don’t require the person to move out of their office. However, the task of coding is quite complicated as it is illustrated by the video shared by this person.
Reply
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
April 2024
Categories
All
|