Dichotomy: a binary separation of a set into two mutually exclusive subsets Data Science: the interdisciplinary field for analyzing data, building models, and bringing about insights and/or data products, which add value to an organization. Data science makes use of various frameworks and methodologies, including (but not limited) to Stats, ML, and A.I. After getting these pesky definitions out of the way, in an effort to mitigate the chances of misunderstandings, let’s get to the gist of this fairly controversial topic. For starters, all this information here is for educational purposes and shouldn’t be taken as gospel since in data science there is plenty of room for experimentation and someone adept in it doesn’t need to abide to this taxonomy or any rules deriving from it. The inaccurate dichotomy issues in data science, however, can be quite problematic for newcomers to the field as well as for managers involved in data related processes. After all, in order to learn about this field a considerable amount of time is required, something that is not within the temporal budget of most people involved in data science, particularly those who are starting off now. So, let’s get some misconceptions out of the way so that your understanding of the field is not contaminated by the garbage that roams the web, especially the social media, when it comes to data science. Namely, there are (mis-)infographics out there that state that Stats and ML are mutually exclusive, or that there is no overlap between non-AI methods and ML. In other words, ML is part of AI, something that is considered blasphemy in the ML community. The reason is simple: ML as a field was developed independently of AI and has its own applications. AI can greatly facilitate ML through its various network-based models (among other systems), but ML stands on its own. After all, many ML models are not AI related, even if AI can be used to improve them in various ways. So, there is an overlap between ML and AI, but there are non-AI models that are under the ML umbrella. Same goes with Statistics. This proud sub-field of Mathematics has been the main framework for data analytics for a long time before ML started to appear, revolting against the model-based approach dictated by Stats. However, things aren’t that clear-cut. Even if the majority of Stats models are model-based, there are also models that are hybrid, having elements of Stats and ML. Take Bayesian Networks for example, or some variants of the Naive Bayes model. Although these models are inherently Statistical, they have enough elements of ML that they can be considered ML models too. In other words, they lie on the nexus of the two sets of methods. What about Stats and AI? Well, Variational AutoEncoders (VAEs) are an AI-based model for dimensionality reduction and data generation. So, there is no doubt that it lies within the AI set. However, if you look under the hood you’ll see that it makes use of Stats for the figuring out what the data generated by it would be like. Specifically, it makes use of distributions, a fundamentally statistical concept, for the understanding and the generation of the data involved. So, it wouldn’t be far-fetched to put VAEs in the Stats set too. From all this I hope it becomes clear that the taxonomy of data science models isn’t that rigid as it may seem. If there was a time when this rigid separation of models made sense, this time is now gone as hybrid systems are becoming more and more popular, while at the same time the ML field expands in various directions outside AI. So, I’d recommend you take those (mis-)infographics with a pinch of salt. After all, most likely they were created by some overworked employee (perhaps an intern) with a limited understanding of data science.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
April 2024
Categories
All
|