With more and more people getting into data science and AI these days, certain aspects of the field are inevitably over-emphasized while others are neglected. Naturally, those providing the corresponding know-how are not professional educators, even if they are competent practitioners and very knowledgeable people. As a result, a lot of emphasis is given to the technical aspects, such as math and programming related skills, data visualization, etc. What about domain knowledge though? Where does that fit in the whole picture? Domain knowledge is all that knowledge that is specific to the domain data science or AI is applied on. If you are in the finance industry, it involves economics theory as well as how certain econometric indexes come into play. In the epidemiology sector, it involves some knowledge as to how viruses come about, how they propagate, and their effects on the organisms they exploit. Naturally, even if domain knowledge is specialized, it may play an important role in many cases. How much exactly depends on the problem at hand as well as how deep the data scientist or AI practitioner wants to go into the subject. Domain knowledge may also include certain business-related aspects that also factor in data science work. Understanding the role of the different individuals who participate in a project is very important, especially if you are tackling a problem that is too complex for data professionals alone. Oftentimes, in projects like this, subject matter experts (SMEs) are utilized and as a data scientist or AI professional you need to liaise with them. This is not always easy as there is limited common ground that can be used as a frame of reference. That's where some general-purpose business knowledge comes in handy. Naturally, incorporating domain knowledge in a data science project is a challenge in and of itself. Even if you do have this non-technical knowledge, you need to find ways to include it in the project organically, adding value to your analysis. That's why certain questions, particularly high-level questions that the stakeholders may want to be answered, are very important. Pairing these questions with other, more low-level questions that have to do with the data at hand, is crucial. Part of being a holistic, well-rounded data science / AI professional involves being able to accomplish this. Of course, exploring this vast topic in a single or even multiple blog posts isn’t practical. Besides, how much can someone go into depth about this subject without getting difficult to read, especially if you are accessing this blog site via a mobile device? For this purpose, my co-author and I have gathered all the material we have accumulated on this topic and put it in a more refined form, namely a technical book. We are now at the final stages of this book, which is titled “Data Scientist Bedside Manner” and is published by Technics Publications. The book should be available before the end of the season. Stay tuned for more details...
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
April 2024
Categories
All
|