A/B testing is a crucial methodology / application in the data science field. Although it mainly relies on Statistics, it has a remained quite relevant in this machine learning and AI oriented era of our field. It's no coincidence that in Thinkful that's one of the first things data science students learn, once they get comfortable with descriptive Stats and basic data manipulation. So, I decided to do a video on this topic to help those interested in learning about it get a good perspective of it and understand better its relationship with Hypothesis Testing. It is my hope that this video can be a good supplement to one's learning on the subject. Enjoy!
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
January 2021
Categories
All
|