What Rust is I may have mentioned Rust in the past, but now I’d like to talk more about it and its role in data science and A.I., as it has passed the test of time, in my view. After having delved into Rust programming a bit, enough to understand that it's much more challenging than I realized at first, I believe I can now write about it with confidence. Also, since it's not so new to me, I'm way past the infatuation stage that characterizes most people who have talked or written about it, usually shortly after they started exploring it. So, Rust is a high-performance language, currently in version 1.51, and with a large enough community of users (and companies) to make a dent in the programming realm. There is even a Rust track in the Exercism platform, where there are dedicated mentors who can help you learn it through the carefully designed and curated programming drills on the Exercism website. What's more, there are a few interesting books on Rust, while there are also conferences and workshops for anyone serious about this language. Rust’s key strengths Rust isn't popular because of its particular name or its cool logo, though. Rust earned its popularity through the strengths it brings to the table and the value-adds that accompany its deployment. First of all, it's high-performance, meaning that you can use it instead of C, C++, or even Java. That's not an easy-to-accomplish thing, and few languages have accomplished that. Also, it offers this performance while maintaining a relatively high-level approach to programming, much like most modern languages that come about. Additionally, Rust is reliable and as safe as it gets. Many consider it to be better in that respect than even C, which has a series of memory management issues resulting in risky code. So, if you want to build a program that just works and won't make you sleep with your phone on at night (in case you'll need to fix an issue of a script you've shipped), Rust is a good option. Finally, Rust is geared towards productivity. It's not an academic language or something a bunch of hobbyists put together, far from that. Rust is built for devs and people who are dead serious about designing and deploying software. The language's well-written documentation adds to this. At the same time, its error messages, although frustrating at first, give you some actual insight as to what's wrong with your scripts (instead of some generic error message that's more of a puzzle than any real help for debugging your code). Rust and Data Science When it comes to data science work, particularly machine learning and AI-related tasks, Rust has the potential of being a great asset. I say this, even though I'm vested in another high-performance language, Julia, for which I've written extensively (my books on Julia) and continue to use up to this day. However, unlike those fanboys of this or the other data science language, I'm open to new possibilities, which I'm always eager to explore. So, even though I'm a long way from being a Rust veteran, I can see its merit in our field. So far, there are a few Rust packages for ML work, such as Smartcore and Linfa (plant juice in Italian), though, in all fairness, this codebase is nowhere near the variety and maturity of the likes of Scikit-learn in Python and the packages in the Julia ecosystem. Still, there is a lot of value Rust offers in this space, and as the community grows, we should be expecting to see the ML and A.I. libraries of Rust grow both in number and sophistication. Final thoughts It may seem a bit too early to tell, but it's not far-fetched to say that Rust is here to stay and make it. While high-level languages like Python had nothing more to offer than simplicity and ease-of-use (probably the main reason they made it to the data science world), Rust is closer to modern languages like Julia and Nim, which offer a serious performance boost. Its business proposition is unquestionable, its adoption higher than many people expected, and its potential of making a dent in machine learning is hard to contest. Once you get past its eccentric programming style, you may begin to view it with the respect and fondness it deserves. So, check it out when you have a moment. Cheers!
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
April 2024
Categories
All
|