As the field of Data Science matures and everything in it is categorized and turned into a teaching module, compartmentalization may seem easier and more efficient as a learning strategy. After all, there is a bunch of books on specialized topics of the craft. That’s all great and for some people, it may even work satisfactorily, but that’s where the risk lies and it’s a pretty big risk too! Learning about something specialized in data science, particularly without a good sense of context or its limitations, can be catastrophic. The old saying “for someone who only knows how to use a hammer everything starts looking like a nail” is applicable here too. Learning about a specialized aspect of data science can often make you think that this is the best approach to solving data science related problems. After all, the author seems to know what he’s talking about and some employers value this skill. However, if this know-how is out of context, it is bound to be ineffective at best and problematic at worst. Data science is an interdisciplinary field with lots of different tools in it, from various areas. Anyone who tries to dissect it and focus mainly on one of them is doing a disservice to the field and if you as a data science learner pay attention to this person, you are bound to warp your knowledge of the craft and delay your mastery of it. Also, this overspecialization in know-how may make you think that you are better than the other data science practitioners who have not developed that niche skill yet. This will limit your ability to learn and perhaps even cooperate with these people, significantly. After all, you are an expert in this, so why bother with less fancy know-how at all? Well, sometimes even the more humble aspects of the field, such as feature engineering, can turn to be more effective at solving a problem well, than some fancy model, so it’s good to remember that. That’s why I’ve always promoted the idea of the right mindset in data science, something that no matter how the field evolves, it is bound to remain stable in the years to come and help you adapt to whatever know-how becomes the norm. Also, no matter how important the algorithms are, it’s even more important knowing how to create your own algorithms and change existing ones, optimizing them for the problem at hand. That’s something that no data science book teaches adequately, as the emphasis is covering material related to certain buzzwords, sometimes without the supervision of an editor. The latter can help immensely in making the contents of a book more comprehensible and relevant to data science in general, providing you with a sense of perspective. So, be careful with what you let enter your data science curriculum as you learn about the craft. Some books may be a waste of time while others, especially those not published through a publisher, may even hinder your development as a data scientist.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Zacharias Voulgaris, PhDPassionate data scientist with a foxy approach to technology, particularly related to A.I. Archives
April 2024
Categories
All
|